# Reactivities of 2,6-dimethoxyphenyl methyl sulfide, selenide and telluride with their onium salts

Masahiro Asahara, Takuya Morikawa, Shin-ichi Nobuki, Tatsuo Erabi and Masanori Wada\*

Department of Materials Science, Faculty of Engineering, Tottori University, Koyama, Tottori 680-8552, Japan

Received (in Cambridge, UK) 30th July 2001, Accepted 2nd August 2001 First published as an Advance Article on the web 13th September 2001

2,6-Dimethoxyphenyl derivatives of sulfur, selenium and tellurium, such as Me $\Phi$ E, Et $\Phi$ E, [Me<sub>2</sub> $\Phi$ E]X, [MeEt $\Phi$ E]X { $\Phi = 2,6-(MeO)_2C_6H_3$ ; E = S, Se, Te; X = MeSO\_4, ClO\_4, or PF\_6} have been prepared, mostly as crystals. The reaction rates and the equilibrium constants for methyl abstraction by Me $\Phi$ E from [MeR $\Phi$ E']ClO<sub>4</sub> {R = Me, Et,  $\Phi$ ; E, E' = S, Se, Te} were measured by means of <sup>1</sup>H NMR spectra. Some representative results include: (1) R $\Phi$ E (R = Me,  $\Phi$ ; E = S, Se) react commonly with [MeR $\Phi$ E]<sup>+</sup> (R = Me, Et,  $\Phi$ ; E = S, Se) to give the equilibrium mixture, except that Me $\Phi$ S does not react with [MeEt $\Phi$ S]<sup>+</sup>; (2) R $\Phi$ E (R = Me,  $\Phi$ ; E = S, Se) do not react with [MeR $\Phi$ Te]<sup>+</sup> (R = Me, Et,  $\Phi$ ); (3) R $\Phi$ Te (R = Me,  $\Phi$ ) react with [MeR $\Phi$ E]<sup>+</sup> (R = Me, Et,  $\Phi$ ; E = S, Se, Te) to complete the methyl abstraction (E = S, Se) or to give the equilibrium mixture (E = Te); (4) the reaction rate of Me $\Phi$ E with [MeR $\Phi$ E']<sup>+</sup> (R = Me, Et,  $\Phi$ ) increases in the orders E = S < Se < Te and E' = S ~ Te < Se; (5) reactions of [Me<sub>2</sub> $\Phi$ E]<sup>+</sup> are faster than those of [MeEt $\Phi$ E]<sup>+</sup>, which react faster than [MeEt $\Phi$ E]<sup>+</sup> increase in the order E = Se < S < Te; (7) Me–E bond strength of [MeR $\Phi$ E]<sup>+</sup> (E = S, Se) increases in the order R =  $\Phi < Me < Et$  or Me <  $\Phi < Et$ , while Me–Te bond strength of [MeR $\Phi$ Te]<sup>+</sup> increases in the order R =  $\Phi < Et < Me$ .

#### Introduction

It is one of the basic chemical interests to compare the chemical and physical properties of compounds among elements as well as among the substituents. 2,6-Dimethoxyphenyl derivatives of chalcogenides in general have prominent properties such as odorless character, higher crystallinity, and higher nucleophilicity than common phenyl derivatives. As part of our systematic investigation on the chemistry of 2,6-dimethoxyphenyl derivatives of main group elements, we have recently reported the reactivity of bis(2,6-dimethoxyphenyl) chalcogenides,  $\Phi_2 E \{ \Phi =$ 2,6-(MeO)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>; E = S, Se, Te}.<sup>1</sup> The reaction rates of  $\Phi_2$ E with dimethyl sulfate and butyl bromide increased in the order E = S< Se < Te, while the E<sup>+</sup>–Me bond strengths of  $[\Phi_2 E-Me]^+$  salts were estimated to increase in the order E = Se < S < Te. With the hope of obtaining more distinctive results, we further studied the reactions of 2,6-dimethoxyphenyl sulfide, selenide, and telluride, R $\Phi$ E, with their onium salts, [MeR' $\Phi$ E']ClO<sub>4</sub> (R = Me,  $\Phi$ ; R' = Me, Et,  $\Phi$ ; E, E' = S, Se, Te), [eqn. (1)] by means of <sup>1</sup>H NMR experiments.



#### Experimental

#### Physical measurements

<sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded for solutions in CDCl<sub>3</sub> using a JEOL model JNM-GX-270 spectrometer. IR spectra were recorded for Nujol® mull using a Shimadzu FTIR-4200

DOI: 10.1039/b106873n

spectrophotometer. GC–MS spectra were recorded for acetone or toluene solutions using a Shimadzu QP-5000 mass spectrometer (gasified at 250 °C). UV–vis spectra were recorded using a Shimadzu UV-160 spectrophotometer. The <sup>1</sup>H and <sup>13</sup>C NMR spectral data are summarized in Tables 1 and 2, respectively.

2,6-Dimethoxyphenyl derivatives  $\Phi$ SH,  $\Phi$ SeH,  $\Phi$ EE $\Phi$ ,  $\Phi_2$ E, [Me $\Phi_2$ E]ClO<sub>4</sub> (E = S, Se, Te) were prepared as described elsewhere.<sup>1,2</sup>

# Preparations of alkyl 2,6-dimethoxyphenyl sulfides, $R\Phi S$ (R = Me, Et)

**MeΦS.** To a solution of ΦSH (50 mmol) in methanol (250 cm<sup>3</sup>) were added iodomethane (3.4 cm<sup>3</sup>, 52 mmol) and triethylamine (7.3 cm<sup>3</sup>, 52 mmol). The mixture was stirred at room temperature for 1 h. Water was added at 0 °C, and the resultant precipitates were recrystallized from hexane to give crystals of MeΦS in 66–84% yield; mp 77–78 °C (81–82 °C);<sup>3</sup> MS: m/z (%) 184 (M<sup>+</sup>; 100) (Found: C, 58.46; H, 6.54%. C<sub>9</sub>H<sub>12</sub>O<sub>2</sub>S<sub>1</sub> requires C, 58.67; H, 6.56%).

**EtΦS.** To a solution of **Φ**SH (5 mmol) in ethanol (40 cm<sup>3</sup>) was added bromoethane (0.4 cm<sup>3</sup>, 5.4 mmol) and 1 M (1 M = 1 mol dm<sup>-3</sup>) sodium hydroxide (6 cm<sup>3</sup>). The mixture was stirred at room temperature for 2 h, and it was treated with hexane (100 cm<sup>3</sup>) and water (100 cm<sup>3</sup>). The hexane layer was separated and was concentrated under reduced pressure to afford crystals of EtΦS in 45% yield; mp 39–40 °C (45–46 °C)<sup>3</sup>; MS: m/z (%) 198 (M<sup>+</sup>; 100). This product was characterized by <sup>1</sup>H and <sup>13</sup>C NMR spectra.

## Preparations of alkyl 2,6-dimethoxyphenyl selenides, $R\Phi Se$ (R = Me, Et)

**MedSe.** To a mixture of  $\Phi$ SeSe $\Phi$  (4.32 g, 10 mmol) and sodium borohydride (0.95 g, 25 mmol) was added ethanol (100 cm<sup>3</sup>) with stirring, followed by addition of iodomethane

J. Chem. Soc., Perkin Trans. 2, 2001, 1899–1903 1899

This journal is © The Royal Society of Chemistry 2001

Table 1 <sup>1</sup>H NMR spectral data for 2,6-dimethoxyphenyl derivatives of sulfur, selenium and tellurium<sup>a</sup>

| Compounds                             | $\delta$ (4-H) <sup>b</sup> | $\delta(3,5-\mathrm{H})^{c}$ | $\delta(2,6\text{-MeO})^d$ | $\delta(\text{Others})^e$                     |
|---------------------------------------|-----------------------------|------------------------------|----------------------------|-----------------------------------------------|
| MeФS                                  | 7.23                        | 6.58                         | 3.90                       | 2.37s                                         |
| MeΦSe                                 | 7.23                        | 6.56                         | 3.88                       | 2.27s[13(Se)]                                 |
| МеФТе                                 | 7.23                        | 6.50                         | 3.85                       | 2.14s[26(Te)]                                 |
| EtΦS                                  | 7.24                        | 6.57                         | 3.88                       | 2.85q[7], 1.17t[7]                            |
| EtΦSe                                 | 7.23                        | 6.56                         | 3.87                       | 2.92q[7], 1.32t[7]                            |
| EtΦTe                                 | 7.23                        | 6.51                         | 3.85                       | 2.96q[8], 1.56t[8]                            |
| $[Me_2\Phi S]ClO_4$                   | 7.63                        | 6.73                         | 4.02                       | 3.37s                                         |
| [Me <sub>2</sub> ΦSe]ClO <sub>4</sub> | 7.56                        | 6.71                         | 3.98                       | 3.23s[11(Se)]                                 |
| [Me <sub>2</sub> ΦTe]ClO <sub>4</sub> | 7.51                        | 6.66                         | 3.93                       | 2.77s[27(Te)]                                 |
| [MeEtΦS]ClO <sub>4</sub>              | 7.66                        | 6.75                         | 4.02                       | 3.90dq[7][15], 3.88dq[7][15], 3.33s, 1.34t[7] |
| [MeEtΦSe]ClO <sub>4</sub>             | 7.59                        | 6.73                         | 3.98                       | 3.90m, 3.19s[11(Se)], 1.42t[8]                |
| [MeEtΦTe]ClO <sub>4</sub>             | 7.54                        | 6.68                         | 3.93                       | 3.50m, 2.57s[27(Te)], 1.51t[8]                |
| [Et <sub>2</sub> ΦS]ClO <sub>4</sub>  | 7.67                        | 6.77                         | 4.01                       | 3.95dq[7][12], 3.84dq[7][12], 1.34t[7]        |
| $[Et_2 \Phi Se]ClO_4$                 | 7.62                        | 6.76                         | 3.98                       | 3.89m, 1.44t[7]                               |
| $[Et_2\Phi Te]ClO_4$                  | 7.57                        | 6.71                         | 3.94                       | 3.53m, 1.54t[8]                               |
|                                       |                             |                              |                            |                                               |

<sup>*a*</sup> In chloroform- $d_1$ ;  $\Phi = 2,6-(MeO)_2C_6H_3$ ; s = singlet, t = triplet, q = quartet, dq = double quartet, m = multiplet; spectral data for  $\Phi_2E$  and  $[Me\Phi_2E]ClO_4$  (E = S, Se, Te) have been reported elsewhere.<sup>1 *b*</sup> Triplet with  $J_{H-H} = 8-9$  Hz. <sup>*c*</sup> Doublet with  $J_{H-H} = 8-9$  Hz. <sup>*d*</sup> Singlet. <sup>*e*</sup> The coupling constants  $J_{H-H}$ ,  $J_{Se-H}$  or  $J_{Te-H}$  (in Hz) are given in square brackets.

Table 2 <sup>13</sup>C NMR spectral data for 2,6-dimethoxyphenyl derivatives of sulfur, selenium and tellurium<sup>a</sup>

| Compounds                             | $\delta^{b}$   |        |        |        |       |                          |
|---------------------------------------|----------------|--------|--------|--------|-------|--------------------------|
| <br>MeФS                              | 112.3,         | 160.7, | 104.2, | 129.2, | 56.2; | 17.8                     |
| MeΦSe                                 | 107.6,         | 160.5, | 104.1, | 129.3, | 56.2; | 7.6                      |
| МеФТе                                 | 91.8,          | 161.7, | 103.7, | 129.8, | 56.1; | -17.6                    |
| EtΦS                                  | 110.4,         | 161.2, | 104.2, | 129.4, | 56.2; | 28.1, 14.7               |
| EtΦSe                                 | 106.4,         | 160.7, | 104.1, | 129.4, | 56.2; | 20.5[59(Se)], 15.5       |
| EtΦTe                                 | 92.0,          | 161.7, | 103.7, | 129.9, | 56.1; | 17.4, -0.9               |
| [Me <sub>2</sub> ΦS]ClO <sub>4</sub>  | , <sup>c</sup> | 161.5, | 105.4, | 137.9, | 57.0; | 45.2                     |
| [Me <sub>2</sub> ΦSe]ClO <sub>4</sub> | 99.6,          | 160.9, | 105.5, | 136.4, | 56.9; | 22.6[53(Se)]             |
| [Me <sub>2</sub> ΦTe]ClO <sub>4</sub> | 94.2,          | 162.3, | 105.0, | 135.9, | 56.7; | 6.2                      |
| [MeEtΦS]ClO₄                          | 94.8,          | 162.0, | 105.4, | 138.2, | 57.1; | 37.7, 24.8, 10.1         |
| [MeEtΦSe]ClO₄                         | 97.2,          | 161.3, | 105.5, | 136.7, | 56.9; | 36.4[51(Se)], 20.8, 10.9 |
| [MeEtΦTe]ClO₄                         | 99.5,          | 162.5, | 105.1, | 136.1, | 56.7; | 21.3, 11.3, 4.6          |
| $[Et_2\Phi S]ClO_4$                   | 92.4,          | 162.5, | 105.4, | 138.3, | 57.1; | 36.3, 10.2               |
| $[Et_2 \Phi Se]ClO_4$                 | 95.3,          | 161.6, | 105.5, | 136.9, | 57.0; | 35.1[53(Se)], 11.1       |
| $[Et_2\Phi Te]ClO_4$                  | 92.3,          | 162.8, | 105.1, | 136.3, | 56.7; | 20.6[147(Te)], 11.5      |

<sup>*a*</sup> In chloroform- $d_1$ ;  $\Phi = 2,6$ -(MeO)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>; spectral data for  $\Phi_2$ E and [Me $\Phi_2$ E]ClO<sub>4</sub> (E = S, Se, Te) have been reported elsewhere.<sup>1 *b*</sup> In the order of C(1), C(2,6), C(3,5), 2,6-MeO; and others, of which the coupling constants  $J_{H-H}$ ,  $J_{Se-H}$  or  $J_{Te-H}$  (in Hz) are given in square brackets when observed. <sup>*c*</sup> The C(1) resonance could not be observed.

(1.56 cm<sup>3</sup>, 25 mmol) to give a clear solution. After stirring for 2 h, water was added at 0 °C, and the resultant precipitates were recrystallized from aqueous methanol to give white crystals of Me $\Phi$ Se in 74% yield; mp 69–70 °C; MS: *m*/*z* (%) 232 (M<sup>+</sup>; 100) (Found: C, 46.84; H, 5.31%. C<sub>9</sub>H<sub>12</sub>O<sub>2</sub>Se<sub>1</sub> requires C, 46.76; H, 5.23%).

**Et** $\Phi$ Se. Using iodoethane, Et $\Phi$ Se was prepared in 74% yield as a brown liquid. It was characterized by <sup>1</sup>H and <sup>13</sup>C NMR spectra.

### Preparations of alkyl 2,6-dimethoxyphenyl tellurides, $R\Phi$ Te (R = Me, Et)

**Me** $\Phi$ Te. To a mixture of  $\Phi$ TeTe $\Phi$  (1.06 g, 2 mmol) and sodium borohydride (0.22 g, 5.8 mmol) was added ethanol (20 cm<sup>3</sup>) with stirring, followed by addition of iodomethane (0.3 cm<sup>3</sup>, 4.6 mmol). After stirring for 3 h, water was added at 0 °C, and the resultant precipitates were recrystallized from hexane to give light yellow crystals of Me $\Phi$ Te in 58% yield; mp 41–42 °C; MS: m/z (%) 280 (M<sup>+</sup>; 77), 137 ( $\Phi^+$ , 100) (Found: C, 38.25; H, 4.35%. C<sub>9</sub>H<sub>12</sub>O<sub>2</sub>Te<sub>1</sub> requires C, 38.64; H, 4.32%). Me $\Phi$ Te is soluble in alcohols, acetone, benzene and hexane.

**Et** $\Phi$ **Te.** Using iodoethane, Et $\Phi$ Te was prepared in 46% yield as a brown liquid. It was characterized by <sup>1</sup>H and <sup>13</sup>C NMR spectra.

#### Preparations of dialkyl(2,6-dimethoxyphenyl)sulfonium salts, [MeR $\Phi$ S]X (R = Me, Et) and [Et<sub>2</sub> $\Phi$ S]X (X = ClO<sub>4</sub>, PF<sub>6</sub>)

**[Me<sub>2</sub>ΦS]X.** A mixture of MeΦS (1.84 g, 10 mmol) and dimethyl sulfate (1.2 cm<sup>3</sup>, 12 mmol) was stirred at room temperature for 15 h to give an oily mixture. It was washed with diethyl ether, repeatedly, and the residual solid was dissolved in water (70 cm<sup>3</sup>). Aqueous 1 M perchloric acid (15 cm<sup>3</sup>) was added, and the resultant precipitates were recrystallized from ethanol to afford colorless crystals of  $[Me_2\Phi S]ClO_4$  in 63% yield; mp 164–165 °C; IR 1100 and 625 cm<sup>-1</sup> (ClO<sub>4</sub>) (Found: C, 40.06; H, 5.03%. C<sub>10</sub>H<sub>15</sub>Cl<sub>1</sub>O<sub>6</sub>S<sub>1</sub> requires C, 40.21; H, 5.06%).

When aqueous ammonium hexafluorophosphate was used in place of perchloric acid, colorless crystals of  $[Me_2\Phi S]PF_6$  were obtained in 56% yield; mp 187–189 °C (after recrystallization from ethanol); IR 840 cm<sup>-1</sup> (PF<sub>6</sub>).

**[MeEtΦS]X.** A mixture of EtΦS (1.58 g, 8 mmol) and dimethyl sulfate (0.8 cm<sup>3</sup>, 8 mmol) was heated at 50 °C for 3 h. On working up as above, colorless crystals of [MeEtΦS]ClO<sub>4</sub> were obtained in 64% yield; mp 146–147 °C; IR 1100 and 625 cm<sup>-1</sup> (ClO<sub>4</sub>) (Found: C, 42.06; H, 5.43%. C<sub>11</sub>H<sub>17</sub>Cl<sub>1</sub>O<sub>6</sub>S<sub>1</sub> requires C, 42.24; H, 5.48%). This salt could be obtained in 58% yield by an analogous treatment of MeΦS and diethyl sulfate. When aqueous ammonium hexafluorophosphate was used in place of perchloric acid, colorless crystals of [MeEtΦS]PF<sub>6</sub> were obtained in 70% yield; mp 159.5–160.5 °C (after recrystallization from ethanol); IR 840 cm<sup>-1</sup> (PF<sub>6</sub>).

**[Et<sub>2</sub>ΦS]X.** A treatment of EtΦS and diethyl sulfate at 50 °C for 24 h afforded colorless crystals of [Et<sub>2</sub>ΦS]ClO<sub>4</sub> in 40% yield; mp 94–95 °C; IR 1100 and 625 cm<sup>-1</sup> (ClO<sub>4</sub>) (Found: C, 43.87; H, 5.90%. C<sub>12</sub>H<sub>19</sub>Cl<sub>1</sub>O<sub>6</sub>S<sub>1</sub>requires C, 44.10; H, 5.86%).

#### Preparations of dialkyl(2,6-dimethoxyphenyl)selenonium salts, [MeR $\Phi$ Se]X (R = Me, Et) and [Et<sub>2</sub> $\Phi$ Se]X (X = ClO<sub>4</sub>, PF<sub>6</sub>)

[Me<sub>2</sub>ΦSe]X. A mixture of MeΦSe (0.51 g, 2 mmol) and dimethyl sulfate (0.2 cm<sup>3</sup>) was stirred at room temperature for 2–6 h to give a yellow oil. It was washed with diethyl ether (1 cm<sup>3</sup> × 3), and the residue was dissolved in water (2 cm<sup>3</sup>). Aqueous solution of ammonium hexafluorophosphate (0.33 g, 2 mmol in 6 cm<sup>3</sup>) was added, and the resultant precipitates were recrystallized from ethanol to give colorless crystals of [Me<sub>2</sub>ΦSe]PF<sub>6</sub> in 87% yield; mp 166–168 °C; IR 840 cm<sup>-1</sup> (PF<sub>6</sub>) (Found: C, 30.80; H, 3.80%. C<sub>10</sub>H<sub>15</sub>F<sub>6</sub>O<sub>2</sub>P<sub>1</sub>Se<sub>1</sub> requires C, 30.71; H, 3.87%).

When aqueous perchloric acid was added in place of ammonium hexafluorophosphate, precipitates of  $[Me_2\Phi Se]ClO_4$  were obtained in 34% yield; mp 126–128 °C (after recrystallization from ethanol); IR 1100 and 625 cm<sup>-1</sup> (ClO<sub>4</sub>) (Found: C, 34.87; H, 4.48%. C<sub>10</sub>H<sub>15</sub>Cl<sub>1</sub>O<sub>6</sub>Se<sub>1</sub> requires C, 34.75; H, 4.37%).

**[MeEtDSe]X.** A mixture of EtDSe (0.35 g, 1.43 mmol) and dimethyl sulfate (0.2 cm<sup>3</sup>) was stirred for 7 h. It was washed with diethyl ether (1 cm<sup>3</sup> × 3), and the residue was dissolved in water (1 cm<sup>3</sup>). Aqueous solution of ammonium hexafluorophosphate (1.5 mmol in 4.5 cm<sup>3</sup>) was added, and the resultant precipitates were recrystallized from ethanol to give colorless crystals of [MeEtDSe]PF<sub>6</sub> in 58% yield; mp 141–142 °C; IR 840 cm<sup>-1</sup> (PF<sub>6</sub>) (Found: C, 32.80; H, 4.33%. C<sub>11</sub>H<sub>17</sub>F<sub>6</sub>O<sub>2</sub>P<sub>1</sub>Se<sub>1</sub> requires C, 32.61; H, 4.23%).

An analogous treatment of Me $\Phi$ Se with diethyl sulfate resulted in a mixture of [Me<sub>2</sub> $\Phi$ Se]PF<sub>6</sub>, [MeEt $\Phi$ Se]PF<sub>6</sub> and [Et<sub>2</sub> $\Phi$ Se]PF<sub>6</sub>.

**[Et<sub>2</sub>ΦSe]X.** A mixture of EtΦSe and diethyl sulfate was heated at 50 °C for 20 h. It was washed well with diethyl ether, and the residue was dissolved in water (1 cm<sup>3</sup>). Aqueous solution of ammonium hexafluorophosphate (4 mmol in 5 cm<sup>3</sup>) was added, and the resultant precipitates were recrystallized from ethanol to give [Et<sub>2</sub>ΦSe]PF<sub>6</sub> in 55% yield; mp 114 °C; IR 840 cm<sup>-1</sup> (PF<sub>6</sub>) (Found: C, 34.49; H, 4.53%. C<sub>12</sub>H<sub>19</sub>F<sub>6</sub>O<sub>2</sub>P<sub>1</sub>Se<sub>1</sub> requires C, 34.38; H, 4.57%).

#### Preparations of dialkyl(2,6-dimethoxyphenyl)telluronium salts, [MeR $\Phi$ Te]X (R = Me, Et) and [Et<sub>2</sub> $\Phi$ Te]X (X = MeSO<sub>4</sub>, ClO<sub>4</sub>)

[Me<sub>2</sub> $\Phi$ Te]X. An analogous mixture of Me $\Phi$ Te and dimethyl sulfate was treated as above. The mixture was washed with diethyl ether repeatedly to give gray crystals of [Me<sub>2</sub> $\Phi$ Te]-MeSO<sub>4</sub> in 87% yield; mp 40–41 °C; IR 1255 cm<sup>-1</sup> (MeSO<sub>4</sub>).

Its aqueous solution was treated with aqueous perchloric acid, and the resultant precipitates were recrystallized from propan-2-ol to give colorless crystals of  $[Me_2\Phi Te]ClO_4$  in 39% yield; mp 140 °C; IR 1100 cm<sup>-1</sup> (ClO<sub>4</sub>) (Found: C, 30.31; H, 3.88%. C<sub>10</sub>H<sub>15</sub>Cl<sub>1</sub>O<sub>6</sub>Te<sub>1</sub> requires C, 30.46; H, 3.83%).

**[MeEtΦTe]X.** In a manner analogous to that described above, a mixture of EtΦTe and dimethyl sulfate was treated with aqueous perchloric acid to give colorless crystals of [MeEtΦTe]ClO<sub>4</sub> in 40% yield after recrystallization from ethanol; mp 82–83 °C; IR 1100 and 625 cm<sup>-1</sup> (ClO<sub>4</sub>) (Found: C, 32.20; H, 4.24%. C<sub>11</sub>H<sub>17</sub>Cl<sub>1</sub>O<sub>6</sub>Te<sub>1</sub> requires C, 32.36; H, 4.20%).

An analogous mixture of Me $\Phi$ Te and diethyl sulfate was treated with aqueous perchloric acid to give a mixture of  $[Me_2\Phi Te]ClO_4$ ,  $[MeEt\Phi Te]ClO_4$ , and  $[Et_2\Phi Te]ClO_4$ .

 $[Et_2 \Phi Te]X$ . An analogous mixture of  $Et \Phi Te$  and diethyl sulfate was treated with aqueous perchloric acid to give

 $[Et_2\Phi Te]ClO_4$  in 47% yield after recrystallization from ethanol; mp 102–103 °C; IR 1100 and 625 cm<sup>-1</sup> (ClO<sub>4</sub>) (Found: C, 33.86; H, 4.49%. C<sub>12</sub>H<sub>19</sub>Cl<sub>1</sub>O<sub>6</sub>Te<sub>1</sub> requires C, 34.13; H, 4.54%).

#### Rate and equilibrium measurements

The reaction rates for eqn. (1) were measured by <sup>1</sup>H NMR spectroscopy by the method of initial rates and by conventional second-order kinetics for the solutions containing Me $\Phi$ E and [MeR $\Phi$ E']ClO<sub>4</sub> at 50 °C, where the concentrations of both reactants were identical (0.04 mmol each) in 0.5 cm<sup>3</sup> of acetone-*d*<sub>6</sub>. The equilibrium constants were measured at the end of reactions. The results are summarized in Table 3.

#### **Results and discussion**

### Preparation and properties of 2,6-dimethoxyphenyl chalcogenides and their onium salts

Some alkyl 2,6-dimethoxyphenyl sulfides,  $R\Phi S$  (R = Me, Et), have been prepared as crystalline compounds by the reactions of 2,6-dimethoxybenzenethiol,  $\Phi SH$ , and iodoalkanes in the presence of base or by the reaction of  $\Phi Li$  with dialkyl disulfide.<sup>3</sup> In the present work, 2,6-dimethoxyphenyl methyl selenide and telluride,  $Me\Phi E$  (E = Se, Te), were prepared also as crystalline compounds, while the ethyl selenide and telluride,  $Et\Phi E$  (E = Se, Te), were obtained as viscous oils at room temperature. Because of this property, these compounds were characterized only by <sup>1</sup>H and <sup>13</sup>C NMR spectra. They could be used successfully for the preparation of the following onium compounds but not for precise measurements such as those given in Table 3.

The sulfonium, selenonium and telluronium salts, [MeR $\Phi$ E]X (R = Me, Et; E = S, Se, Te; X = MeSO<sub>4</sub>, ClO<sub>4</sub>, PF<sub>6</sub>), could be prepared best by the reactions of R $\Phi$ E with dimethyl sulfate or by the reaction of Me $\Phi$ S with diethyl sulfate, followed by anion exchange in water. However, the reaction of Me $\Phi$ Se with diethyl sulfate resulted in a mixture containing both [Me<sub>2</sub> $\Phi$ Se]X and [Et<sub>2</sub> $\Phi$ Se]X [eqns. (2) and (3)], implying

 $R\Phi E + (MeO)_2SO_2 \rightarrow MeR\Phi E](MeSO_4) (E = S, Se, Te; R = Me, Et)$ (2)

$$Me\Phi E + (EtO)_2 SO_2 \rightarrow [MeEt\Phi E](EtSO_4) + [Me_2\Phi E](EtSO_4) + [Et_2\Phi E](EtSO_4) (E = Se, Te) \quad (3)$$

that the initially formed onium ion,  $[MeEt\Phi Se]^+$ , methylated Me $\Phi$ Se to give Et $\Phi$ Se and  $[Me_2\Phi Se]^+$  very fast and that Et $\Phi$ Se reacted also with diethyl sulfate to give  $[Et_2\Phi Se]^+$ . An analogous formation of mixture was observed for the reaction of Me $\Phi$ Te with diethyl sulfate to give a mixture containing  $[Me_2\Phi Te]ClO_4$ ,  $[MeEt\Phi Te]ClO_4$ , and  $[Et_2\Phi Te]ClO_4$ .

The <sup>1</sup>H NMR spectra of 2,6-dimethoxyphenyl derivatives (Table 1) showed a triplet due to 4-proton, a doublet due to 3,5protons and a very sharp singlet due to 2,6-methoxy protons. The methylene proton resonances of ethyl group in [MeEtΦE]X were observed as multiplets or double AB quartets due to the pyramidal arrangement of three organic groups on element E. In spite of the well-known electronegativity order of chalcogenides  $S \le Se > Te$ , most of the <sup>1</sup>H NMR chemical shifts were observed in the normal orders of these elements, S < Se < Te or S > Se > Te. The chemical shifts of sulfonium and selenonium protons were quite similar in value, but those of CH<sub>3</sub>- and CH<sub>2</sub>-Te protons in [MeRΦTe]X were observed at much higher magnetic fields.

The <sup>13</sup>C NMR spectra of 2,6-dimethoxyphenyl derivatives (Table 2) showed five resonances due to the  $\Phi$ -group. The *ipso*-carbon, C(1), resonance of the  $\Phi$ -group was often too weak to be observed or it was observed in the region of  $\delta$  91~112. It shifted to higher magnetic field in the order E = S < Se < Te

**Table 3** Rate constants and equilibrium constants for the reactions,<sup>*a*</sup>  $R\Phi E[A] + [MeR'\Phi E']ClO_4[B] \rightleftharpoons [MeR\Phi E]ClO_4[C] + R'\Phi E'[D](1)$ 

| Entry                   | RΦE                   | $[MeR'\Phi E']ClO_4$                                                     | $k_2/1 \text{ mol}^{-1} \text{ s}^{-1}$ | $\mathbf{A} : \mathbf{C} \text{ or } \mathbf{B} : \mathbf{D}^{b}$ | Eq. time/h <sup>c</sup>       | Κ                       |
|-------------------------|-----------------------|--------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------|-------------------------------|-------------------------|
| 1                       | MeΦS                  | [MeD <sub>2</sub> S]ClO <sub>4</sub>                                     | $4.7 \times 10^{-5}$                    | 11:89                                                             | 384                           | <i>ca.</i> 100          |
| 2                       | MeΦS                  | [MeD <sub>2</sub> Se]ClO <sub>4</sub>                                    | $4.2 \times 10^{-4}$                    | 32:68                                                             | 138                           | 4.5                     |
| 3                       | MeΦS                  | Mep <sub>2</sub> Te]ClO <sub>4</sub>                                     | 0.0                                     | 100:0                                                             | 980                           | 0.0                     |
| 4                       | MeΦS                  | [Me <sub>2</sub> ΦSe]ClO <sub>4</sub>                                    | $5.0 \times 10^{-5}$                    | 34:66                                                             | 288                           | 4.3                     |
| 5                       | MeΦS                  | Me <sub>2</sub> $\Phi$ Te]ClO <sub>4</sub>                               | 0.0                                     | 100:0                                                             | 360                           | 0.0                     |
| 6                       | MeΦS                  | [MeEtΦS]ClO₄                                                             | 0.0                                     | 100:0                                                             | 336                           | 0.0                     |
| 7                       | MeΦS                  | [MeEtΦSe]ClO₄                                                            | $2.4 \times 10^{-5}$                    | $(47:53)^d$                                                       | 336                           | $(1.3)^{d}$             |
| 8                       | MeΦS                  | [MeEtΦTe]ClO <sub>4</sub>                                                | 0.0                                     | 100:0                                                             | 336                           | 0.0                     |
| 9                       | $\Phi_2 S$            | Me <sub>2</sub> ΦS]ClO₄                                                  | e                                       | 93:7                                                              | 117                           | <i>ca.</i> 0.01         |
| 10                      | $\tilde{\Phi_{2}S}$   | Me <sub>2</sub> $\Phi$ Se]ClO <sub>4</sub>                               | e                                       | 89:11                                                             | 180                           | ca. 0.01                |
| 11                      | $\tilde{\Phi_{2}S}$   | Me <sub>2</sub> $\Phi$ Te <sub>1</sub> ClO <sub>4</sub>                  | 0.0                                     | 100:0                                                             | 500                           | 0.0                     |
| 12                      | MeΦSe                 | [MeD <sub>3</sub> S]ClO <sub>4</sub>                                     | $2.1 \times 10^{-4}$                    | 7:93                                                              | 257                           | ca. 100                 |
| 13                      | MeΦSe                 | [MeQ <sub>3</sub> Se]ClO <sub>4</sub>                                    | $3.1 \times 10^{-3}$                    | 12:88                                                             | 17                            | 54                      |
| 14                      | MeΦSe                 | [MeQ <sub>3</sub> Te]ClO <sub>4</sub>                                    | 0.0                                     | 100:0                                                             | 258                           | 0.0                     |
| 15                      | MeΦSe                 | [Me <sub>2</sub> ΦS]ClO <sub>4</sub>                                     | $8.9 \times 10^{-6}$                    | 69:31                                                             | 360                           | 0.23                    |
| 16                      | MeΦSe                 | Me <sub>2</sub> $\Phi$ TelClO <sub>4</sub>                               | 0.0                                     | 100:0                                                             | 360                           | 0.0                     |
| 17                      | MeΦSe                 | [MeEt $\Phi$ S]ClO <sub>4</sub>                                          | $6.9 \times 10^{-6}$                    | 80:20                                                             | 336                           | 0.06                    |
| 18                      | MeΦSe                 | [MeEtΦSelClO <sub>4</sub>                                                | $1.6 \times 10^{-4}$                    | 67:33                                                             | 64                            | 0.24                    |
| 19                      | MeΦSe                 | [MeEt $\Phi$ TelClO <sub>4</sub>                                         | 0.0                                     | 100:0                                                             | 336                           | 0.0                     |
| 20                      | Φ <sub>2</sub> Se     | Me <sub>2</sub> $\Phi$ SICIO <sub>4</sub>                                | e                                       | $(89:11)^{f}$                                                     | 117                           | $(0.015)^{f}$           |
| 21                      | $\Phi_2$ Se           | [Me <sub>2</sub> $\Phi$ SelClO <sub>4</sub>                              | e                                       | $(91:9)^{f}$                                                      | 20                            | $(0.01)^{f}$            |
| 22                      | $\Phi_2$ Se           | [Me <sub>2</sub> $\Phi$ TelClO <sub>4</sub>                              | 0.0                                     | 100:0                                                             | 87                            | 0.0                     |
| 23                      | MeФTe                 | [MeØ <sub>2</sub> S]ClO <sub>4</sub>                                     | $2.0 \times 10^{-3}$                    | 0.100                                                             | 8                             | $> 10^4$                |
| 24                      | МеФТе                 | [MeD <sub>2</sub> SelClO <sub>4</sub>                                    | $\sim 1.0 \times 10^{-1}$               | 0:100                                                             | 2                             | $> 10^4$                |
| 25                      | МеФТе                 | [Me $\Phi_{1}$ TelClO <sub>4</sub>                                       | $2.2 \times 10^{-3}$                    | 14:86                                                             | 74                            | 32                      |
| 26                      | МеФТе                 | [Me <sub>2</sub> $\Phi$ S]ClO <sub>4</sub>                               | $\frac{10}{3.3} \times 10^{-4}$         | 0 · 100                                                           | 476                           | $> 10^4$                |
| 27                      | МеФТе                 | [Me <sub>2</sub> $\Phi$ SelClO <sub>4</sub>                              | $4.1 \times 10^{-2}$                    | 0.100                                                             | 7                             | $> 10^4$                |
| 28                      | МеФТе                 | [MeEt $\Phi$ S]ClO                                                       | $2.1 \times 10^{-4}$                    | 0.100<br>0.100                                                    | 546                           | $> 10^4$                |
| 29                      | МеФТе                 | [MeEt $\Phi$ SelClO                                                      | $6.9 \times 10^{-3}$                    | 0.100<br>0.100                                                    | 10                            | $> 10^4$                |
| 30                      | МеФТе                 | [MeEtΦTelClO                                                             | $5.6 \times 10^{-4}$                    | $(31 \cdot 69)^d$                                                 | 408                           | $(50)^d$                |
| 31                      | Φ.Te                  | [Me_DS]ClO                                                               | $2.5 \times 10^{-4}$                    | 0.100                                                             | 284                           | $> 10^4$                |
| 32                      | Φ <sub>2</sub> Te     | [Me <sub>2</sub> $\Phi$ SelClO                                           | $\leq 1.2 \times 10^{-2}$               | 0 : 100                                                           | 7                             | $> 10^4$                |
| 33                      | $\Phi_2 Te$           | $[Me_2\Phi Te]ClO_4$                                                     | $1.3 \times 10^{-5}$                    | 84:16                                                             | 500                           | 0.031                   |
| In acetone- $d_6$ at 50 | °C; $\Phi = 2,6-(Me)$ | O) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> . <sup>b</sup> Molar ratio | at the equilibrium. <sup>c</sup>        | Final hour of measur                                              | ement. <sup>d</sup> Ethyl gro | up transfer products al |

formed in very small amounts. <sup>e</sup> The rate constant could not be obtained due to the very small change. <sup>f</sup> Some unknown products were contaminated.

for  $R\Phi E$  (R = Me, Et), but it shifted in the reverse order for [MeEt $\Phi E$ ]ClO<sub>4</sub> or in the order S > Se < Te for [Et<sub>2</sub> $\Phi E$ ]ClO<sub>4</sub>. The other four resonances due to the  $\Phi$ -group were far less sensitive to the change of E. In contrast,  $\alpha$ -carbons in R–E were quite sensitive to the change of E, and they shifted, in general, to higher magnetic field in the order E = S < Se < Te, an exception being methyl carbon in Et $\Phi E$ .

Oxidation potentials of Ph<sub>2</sub>E {electrochemical  $E_0/V$  vs. NHE = 1.56 (S), 1.38 (Se), 0.95 (Te)},<sup>4</sup> Me(4-RC<sub>6</sub>H<sub>4</sub>)E,<sup>4,5</sup> Me<sub>2</sub>E,<sup>5</sup> MePhE,<sup>5,6</sup> and  $\Phi E E \Phi^7$  have been reported to decrease in the order E = S > Se > Te, while those of phenoxachalcogenides, C<sub>12</sub>H<sub>8</sub>OE,<sup>8</sup> and chalcanthrenes, C<sub>12</sub>H<sub>8</sub>E<sub>2</sub>,<sup>9,10</sup> studied both by photoelectron spectroscopy and semiempirical MO calculation, have been reported to show somewhat different orders such as Se > S > Te. The former order (S > Se > Te) paralleled the rate order of reactions between  $\Phi_2E$  and dimethyl sulfate (S < Se < Te), while the latter paralleled the Me–E<sup>+</sup> bond strength order of [Me $\Phi_2E$ ]<sup>+</sup> (Se < S < Te).<sup>1</sup>

## Reaction rates and equilibrium constants for the reactions of alkyl 2,6-dimethoxyphenyl chalcogenides with their onium salts

The reactions of alkyl 2,6-dimethoxyphenyl chalcogenides, R $\Phi$ E, with the onium salts, [MeR' $\Phi$ E']ClO<sub>4</sub> (R = Me,  $\Phi$ ; R' = Me, Et,  $\Phi$ ; E, E' = S, Se, Te) [eqn. (1)] were followed by measuring the <sup>1</sup>H NMR spectra of acetone- $d_6$  solutions containing equimolar amounts of Me $\Phi$ E and [MeR' $\Phi$ E']ClO<sub>4</sub> at 50 °C (Table 3). Because of the sharpness of methoxy proton resonance, the reactions could easily be followed. Among the three organic groups in [MeEt $\Phi$ E']ClO<sub>4</sub>, the methyl group predominantly transferred to Me $\Phi$ E, although ethyl transfer products also formed in very small amounts (entries 7 and 30 in Table 3). The relative reactivities of alkyl methylphenyl-

sulfonium perchlorates with iodide anion in acetone at 50 °C have been reported to be Me (1.0) > Et (0.20) > i-Pr (0.05).<sup>11-13</sup> Generally, the relative reactivity of the alkyl groups of alkyl halides toward nucleophiles has been known to be Me : Et : i-Pr = 1.0 : 0.05 : 0.01.<sup>14</sup> Although data are not shown, essentially identical results for  $k_2$  and K were obtained for the reactions in CDCl<sub>3</sub> solutions. These observations are indicative that the present reactions [(eqn. 1)] are of typical S<sub>N</sub>2 reactions.<sup>13,15</sup>

The reaction between Me $\Phi$ S and [Me $\Phi_2$ S]ClO<sub>4</sub> was very slow but it gradually formed [Me<sub>2</sub> $\Phi$ S]ClO<sub>4</sub> and  $\Phi$ <sub>2</sub>S (entry 1 in Table 3). The second order rate constant,  $k_2$ , was calculated from the time-dependent <sup>1</sup>H NMR spectra at the early stage of reaction. In fifteen days, it attained an equilibrium containing 89% of the products. The equilibration was confirmed by observation of the reverse reaction (entry 9), although the rate could not be followed with precision due to the minority of the products. The equilibrium constants of entries 1 vs. 9, 4 vs. 15, 10 vs. 12, and 25 vs. 33 in Table 3 were the mean value estimated from these reversal reactions. The reaction of  $Me\Phi S$  with  $[Me\Phi_2Se]ClO_4$  was faster than that with  $[Me\Phi_2S]ClO_4$ , but, interestingly, the former reaction attained an equilibrium with less amount of the products in spite of the faster forward rate (entry 2). The reverse reaction (entry 20) was also observed, but the rate constant could not be obtained due to the minority of the products and because some unknown products were contaminants. The mixture of Me $\Phi$ S and [Me $\Phi_2$ Te]ClO<sub>4</sub> did not react (entry 3), as confirmed by the reverse reaction (entry 31).

Me $\Phi$ S reacted also with [Me<sub>2</sub> $\Phi$ Se]ClO<sub>4</sub> to give an equilibrium mixture containing [Me<sub>2</sub> $\Phi$ S]ClO<sub>4</sub> and Me $\Phi$ Se (entry 4), but it did not react with [Me<sub>2</sub> $\Phi$ Te]ClO<sub>4</sub> (entry 5). These reactivities also were confirmed by the reverse reactions (entries 15 and 26). It is impossible to follow the reaction of Me $\Phi$ S with  $[Me_2\Phi S]ClO_4$  due to the identity of the products, and the equilibrium constant must be 1.0, naturally, if there is methyl group exchange. It was unexpected that Me $\Phi S$  did not react with  $[MeEt\Phi S]ClO_4$  (entry 6), while Me $\Phi S$  reacted with  $[MeEt\Phi Se]-ClO_4$  to give an equilibrium mixture (entry 7). Me $\Phi S$  also did not react with  $[MeEt\Phi Te]ClO_4$  (entry 8). These results indicate that the Me–E bond strength of  $[Me\Phi_2E]ClO_4$  increases in the order  $E = S \le Se < Te$ , but that the strength of  $[Me_2\Phi E]ClO_4$  and  $[MeEt\Phi S]ClO_4$  increases in the order  $E = Se \le S < Te$ . Reactions of  $\Phi_2S$  with  $[Me_2\Phi E]ClO_4$  confirmed the last order (entries 9–11). As observed for Me $\Phi S$ , the reaction of Me $\Phi Se$  with  $[Me_2\Phi S]ClO_4$  was slower than that with  $[Me_2\Phi Se]ClO_4$  (entries 12 and 13).

The larger equilibrium constant of the reaction between Me $\Phi$ Se and [Me $\Phi_2$ S]ClO<sub>4</sub> (entry 12) than that between Me $\Phi$ S and  $[Me\Phi_2S]ClO_4$  (entry 1) or that between Me\PhiSe and  $[Me\Phi_2Se]ClO_4$  (entry 13) also confirmed the Me-E bond strength order of  $[Me\Phi_2E]ClO_4$  (E = S  $\leq$  Se). The equilibrium constant for the reaction of Me $\Phi$ Se with [Me<sub>2</sub> $\Phi$ Se]ClO<sub>4</sub> also must be 1.0, naturally. By comparison of this value and the equilibrium constants observed for the reactions of  $Me\Phi Se$ with  $[Me_2\Phi E]ClO_4$  (entries 15 and 16) or with  $[MeEt\Phi E]ClO_4$ (entries 17-19), it was confirmed that the Me-E bond strength of  $[Me_2\Phi E]ClO_4$  and  $[MeEt\Phi E]ClO_4$  increases in the order  $E = Se \le S \le Te$ . It was also found that  $\Phi_2S$  and  $\Phi_2Se$  are weaker nucleophiles than Me $\Phi$ E (E = S, Se, Te) (entries 9–11, 20–22). Tellurides, Me $\Phi$ Te and  $\Phi_2$ Te, were stronger nucleophiles than Me $\Phi$ E and  $\Phi_2$ E (E = S, Se), and they reacted with [Me $\Phi_2$ E]- $ClO_4$ ,  $[Me_2\Phi E]ClO_4$  and  $[MeEt\Phi E]ClO_4$  (E = S, Se) to complete the reactions (entries 23, 24, 26–29, 31, 32). The reaction rate was faster with selenonium salts than with sulfonium salts irrespective of the type of onium salts. Me $\Phi$ Te reacted with  $[Me\Phi_2Te]ClO_4$  and  $[MeEt\Phi Te]ClO_4$  to give the equilibrium mixtures (entries 25 and 30). Thus, MeoTe must react with  $[Me_2\Phi Te]ClO_4$ , although the reaction cannot be followed by <sup>1</sup>H NMR spectrometry.  $\Phi_2$ Te also reacted with [Me<sub>2</sub> $\Phi$ Te]ClO<sub>4</sub> (entry 33), which was the reverse reaction of  $Me\Phi Te$  with  $[Me\Phi_2Te]ClO_4$  (entry 25). By comparison of these equilibrium constants, the Me-Te bond strength of  $[MeR\Phi Te]ClO_4$  is expected to increase in the order  $[Me\Phi_2Te]ClO_4 < [MeEt\PhiTe]$ - $ClO_4 < [Me_2 \Phi Te]ClO_4.$ 

Some important results are summarized as follows:

1)  $R\Phi E$  (R = Me,  $\Phi$ ; E = S, Se) react commonly with  $[MeR\Phi E]^+$  (R = Me, Et,  $\Phi$ ; E = S, Se) to give the equilibrium mixture, except that  $Me\Phi S$  does not react with  $[MeEt\Phi S]^+$ .

2) R $\Phi$ E (R = Me,  $\Phi$ ; E = S, Se) do not react with [MeR $\Phi$ Te]<sup>+</sup> (R = Me, Et,  $\Phi$ ).

3) R $\Phi$ Te react with [MeR $\Phi$ E]<sup>+</sup> (R = Me, Et,  $\Phi$ ; E = S, Se, Te) to complete the methyl abstraction (E = S, Se) or to give the equilibrium mixture (E = Te).

4) The reaction rate of Me $\Phi$ E with [MeR $\Phi$ E']<sup>+</sup> (R = Me, Et,  $\Phi$ ) increases in the orders E = S < Se < Te and E' = S ~ Te < Se.

5) Reactions of  $[Me_2\Phi E]^+$  are faster than those of  $[MeEt\Phi E]^+$ , which react faster than  $[Me\Phi_2 E]^+$ . 6) The Me–E bond strength of  $[Me\Phi_2 E]^+$  increases in the

6) The Me–E bond strength of  $[Me\Phi_2E]^+$  increases in the order  $E = S \le Se < Te$ , but those of  $[Me_2\Phi E]^+$  and  $[MeEt\Phi E]^+$  increase in the order  $E = Se \le S < Te$ .

7) The Me–E bond strength of  $[MeR\Phi E]^+$  (E = S, Se) increases in the orders  $R = \Phi < Me < Et$  or  $Me < \Phi < Et$ , while the Me–Te bond strength of  $[MeR\Phi Te]^+$  increases in the order  $R = \Phi < Et < Me$ .

The results for the reactivity of Me $\Phi$ E with [MeR $\Phi$ E']<sup>+</sup> are quite complicated, being influenced by E and E', as well as R. The results 4), 6), and 7) are especially interesting because they contain unusual orders of elements.

#### Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (No. 08455492) from the Ministry of Education, Science and Culture.

#### References

- 1 M. Wada, S. Nobuki, Y. Tenkyuu, S. Natsume, M. Asahara and T. Erabi, J. Organomet. Chem., 1999, 580, 282.
- 2 M. Wada, S. Natsume, S. Suzuki, A. Uo, M. Nakamura, S. Hayase and T. Erabi, J. Organomet. Chem., 1997, 548, 223.
- 3 P. Jacob III and A. T. Shulgin, Synth. Commun., 1981, 11, 957.
- 4 (a) L. Engman, J. Lind and G. Merényi, J. Phys. Chem., 1994, 98, 3174; (b) L. Engman, J. Persson, C. M. Anderson and M. Berglund, J. Chem. Soc., Perkin Trans. 2, 1992, 1309.
- 5 G. Tschmutowa and H. Bock, Z. Naturforsch., Teil B, 1976, 31, 1611.
- 6 M. Jonsson, J. Lind, G. Merényi and T. E. Eriksen, J. Chem. Soc., Perkin Trans. 2, 1995, 67.
- 7 T. Erabi, K. Shimizu, S. Hayase and M. Wada, *Denki Kagaku*, 1995, 63, 960.
- 8 F. P. Colonna, G. Distefano, V. Galasso, K. J. Irgolic, C. E. King and G. C. Pappalardo, *J. Organomet. Chem.*, 1978, **146**, 235.
- 9 G. Distefano, V. Galasso, K. J. Irgolic and G. C. Pappalardo, J. Chem. Soc., Perkin Trans. 2, 1983, 1109.
- 10 M. E. Amato, A. Grassi, K. J. Irgolic, G. C. Pappalardo and L. Radics, Organometallics, 1993, 12, 775.
- 11 H. Matsuyama, H. Minato and M. Kobayashi, *Bull. Chem. Soc. Jpn.*, 1975, **48**, 3287.
- 12 K. Umemura, H. Matsuyama, N. Watanabe, M. Kobayashi and N. Kamigata, J. Org. Chem., 1989, 54, 2374.
- 13 K. Umemura, H. Matsuyama and N. Kamigata, *Bull. Chem. Soc. Jpn.*, 1990, **63**, 2593.
- 14 K. Okamoto, I. Nitta, T. Imoto and H. Shingu, Bull. Chem. Soc. Jpn., 1967, 40, 1905.
- 15 N. Buckley and N. J. Oppenheimer, J. Org. Chem., 1994, 59, 5717.